

UNIVERSITA' "MEDITERRANEA" DI REGGIO CALABRIA LAUREA MAGISTRALE IN INGEGNERIA CIVILE

CORSO DI INFRASTRUTTURE FERROVIARIE

LECTURE 01 - GENERALITA' SUL TRASPORTO FERROVIARIO

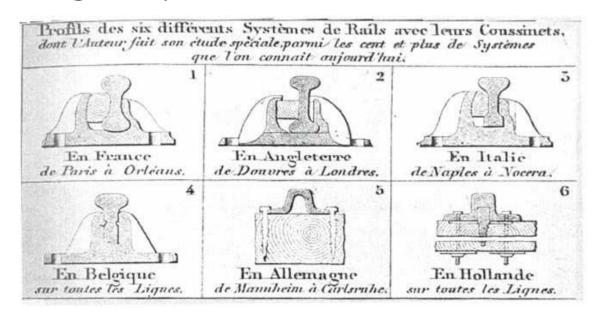
Docente: Ing. Marinella Giunta

Le origini della ferrovia o "strada ferrata" possono farsi risalire agli antichi Egizi che trasportavano pesanti carichi su guide di bronzo.

Anche i Romani costruivano le "vie ferree" con file di pietra dura.

Nel 1500 in Tirolo, e successivamente in Inghilterra, le miniere erano servite da carri le cui ruote scorrevano su guide costituite da tavole di legno che in seguito furono anche rivestite di lamiera e le ruote furono ricoperte di cerchioni metallici per ottenere una consistente diminuzione della resistenza all'avanzamento.

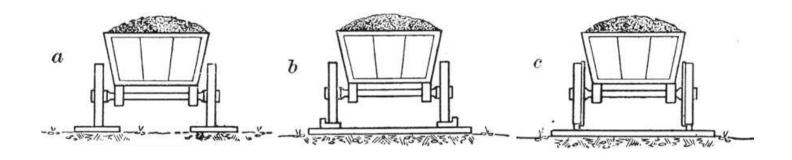
Nel 1802 in Inghilterra fu brevettata una motrice a vapore con ruote a gola su rotaie.



М

CENNI STORICI

I problemi che si dovettero via via affrontare riguardarono i profili della rotaia e della ruota, al fine di ridurre le resistenze al moto e migliorare le condizioni di rotolamento.


Per quanto riguarda le rotaie si svilupparono profili a T o a doppio T, per garantire la resistenza flessionale, e l'arrotondamento della parte superiore per facilitare la funzione di supporto e guida per la ruota.

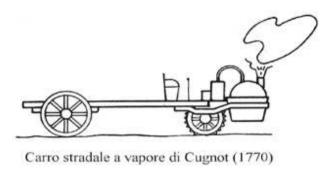
Per le ruote l'esperienza mostrò che il bordo esterno della gola costituiva un impedimento all'avanzamento in curva e fu eliminato, mentre un ulteriore perfezionamento fu costituito dall'introduzione del bordino interno sulla ruota.

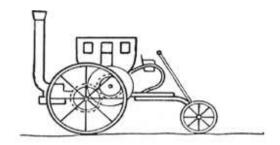
Comunque la prima ferrovia considerata tale è la linea di 14 km inaugurata in Inghilterra nel 1825.

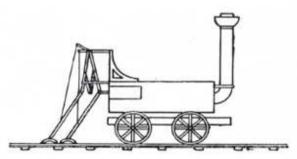
Da questo primato inglese deriva che, internazionalmente, la circolazione ferroviaria adotta la marcia a sinistra.

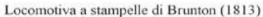
La linea a servizio viaggiatori era servita dalla celebre locomotiva a vapore "locomotion", opera di George Stephenson.

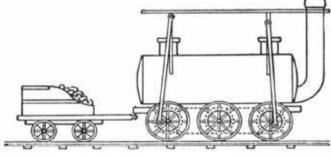
Benché il primo tentativo di applicazione della trazione a vapore avesse riguardato carri stradali, la leggerezza della loro struttura, paragonata alla massa della caldaia, ed il pessimo stato delle strade dell'epoca, avevano reso tali mezzi soggetti a continui malfunzionamenti. Per questo motivo in campo stradale la trazione a vapore non ebbe mai grande sviluppo.

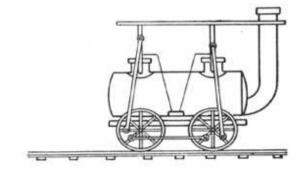

In verità, anche i primi tentativi di applicazione della trazione a vapore alle ferrovie furono scoraggianti, perché la notevole potenza prodotta dalla locomotiva a vapore non poteva essere utilizzata a causa della scarsa aderenza esistente tra ruota e rotaia.

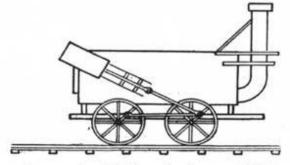



Le locomotive di George e Robert Stephenson risolsero, invece, in modo definitivo il problema dell'aderenza mediante l'accoppiamento delle ruote motrici e non motrici di due o più assi. In particolare, la locomotiva del 1828 presentava la biella motrice inclinata e la biella di accoppiamento.






Carrozza stradale a vapore di Vivian (1801)



La prima locomotiva di George Stephenson (1814)

Locomotiva di Robert Stephenson (1828)

Il nuovo sistema di trasporto si presentò subito rivoluzionario e di grandissima efficienza rispetto ai mezzi fino ad allora utilizzati: consentiva infatti lo spostamento contemporaneo di notevoli masse di persone e cose con tempi e costi ridotti.

Si può affermare che la nascita di questo sistema di trasporto fu il grande propulsore della Rivoluzione Industriale a partire dalla metà dell'ottocento. La ferrovia consenti, infatti, alle aziende di produrre non solo per i mercati locali ma anche per quelli nazionali e internazionali.

Dalla metà dell'Ottocento ai primi decenni del Novecento le crescenti esigenze di mobilità terrestre furono prevalentemente soddisfatte dalla ferrovia.

Lo sviluppo del sistema in questi anno ha riguardato: la velocità dei veicoli e la sicurezza della circolazione.

SVILUPPO E CONSISTENZA DELLA RETE FERROVIARIA IN ITALIA

In Italia.....

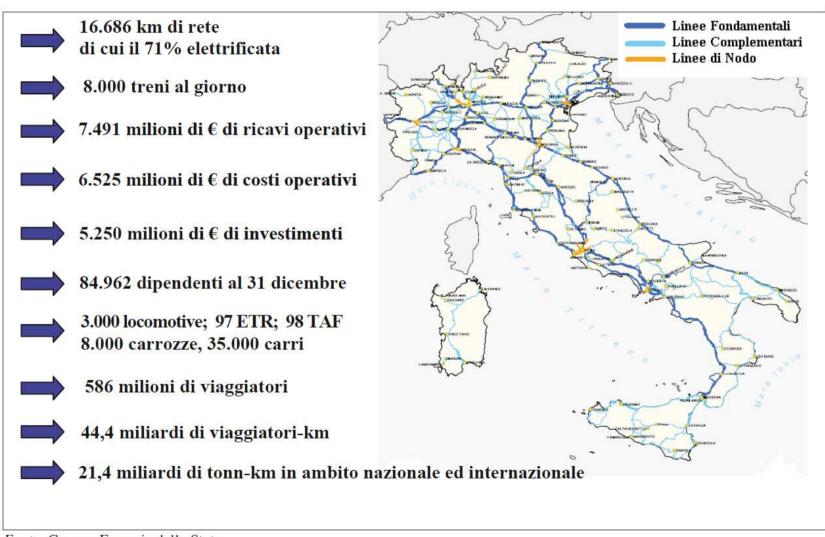
Il primo tronco ferroviario da Napoli a Portici, lungo 8 Km, fu inaugurato il 3-10-1839.

Oggi la lunghezza della rete ferroviaria è di 16.686 km di cui 11.887 km (pari al 71%) di linee elettrificate e 7.493 km (pari al 44%) di linee a doppio binario. In essa transitano circa 8.000 treni al giorno che muovono complessivamente oltre 586 milioni di viaggiatori e circa 50 milioni di tonnellate di merci in un anno.

Lo sviluppo delle linee in concessione è di circa 3.600 Km.

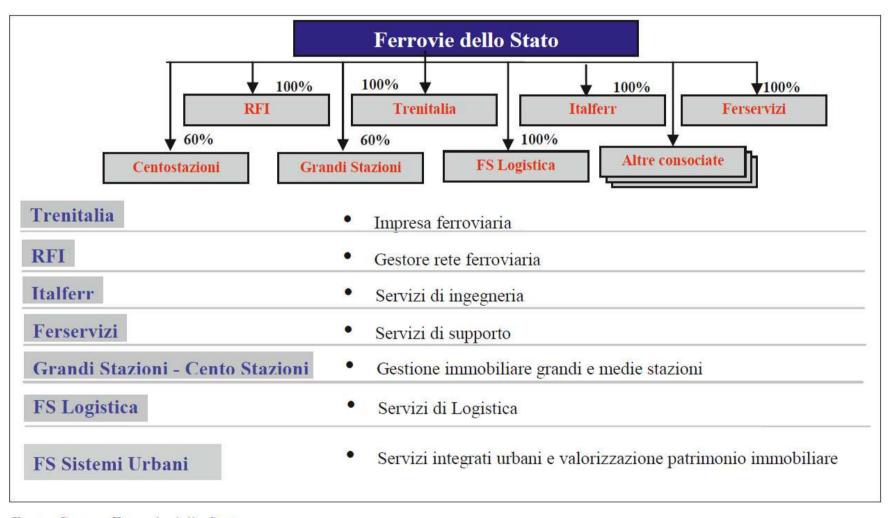
SVILUPPO E CONSISTENZA DELLA RETE FERROVIARIA IN ITALIA

Estensione della rete ferroviaria italiana dal 2001 al 2009.


Chilometri e percentuali

	2001	2002	2003	2004	2005	2006	2007	2008	2009
Rete elettrificata	10.864	10.891	10.966	11.044	11.364	11.455	11.531	11.727	11.887
%	67,8	68,1	68,7	69,4	70	70,3	70,6	70,9	71,2
Rete non elettrificata	5.171	5.094	4.999	4.871	4.862	4.840	4.804	4.802	4.798
%	32,2	31,9	31,3	30,6	30	29,7	29,4	29,1	28,8
Totale Rete:	16.035	15.985	15.965	15.915	16.225	16.295	16.335	16.529	16.686
Rete a semplice binario	9.805	9.720	9.667	9.554	9.451	9.397	9.285	9.223	9.192
%	61,1	60,8	60,6	60	58,3	57,7	56,8	55,8	55,1
Rete a doppio binario	6.230	6.265	6.298	6.362	6.774	6.898	7.050	7.306	7.493
%	38,9	39,2	39,4	40	41,7	42,3	43,2	44,2	44,9
Rete con blocco automatico	5.434	5.459	5.505	5.558	5.829	5.861	6.023	6.283	6.451
%	33,9	34,2	34,5	34,9	35,9	36	36,9	38	39

Fonte: Gruppo Ferrovie dello Stato

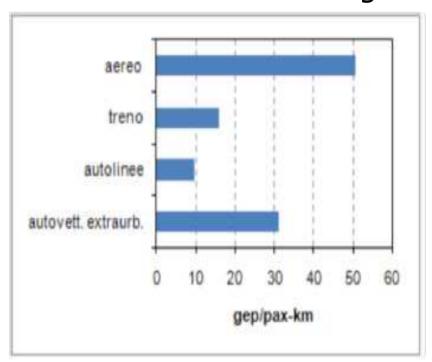

I NUMERI DEL GRUPPO FERROVIE DELLO STATO

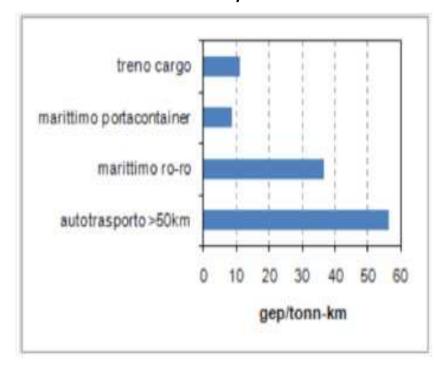
Fonte: Gruppo Ferrovie dello Stato

MODELLO ORGANIZZATIVO DELLE FERROVIE DELLO STATO

Fonte: Gruppo Ferrovie dello Stato

Le caratteristiche fondamentali del TRASPORTO FERROVIARIO sono:


- ✓ la guida vincolata
- ✓ la sua applicazione su <u>distanze brevi</u> (trasporto urbano e metropolitano), <u>medie</u> (trasporto pubblico locale e regionale) e <u>medio-lunghe</u> (intercity, eurostar e treni ad alta velocità)
- ✓ la marcia non "a vista", come per il trasporto stradale, ma regolata da sistemi di segnalamento, che consentono un'elevata sicurezza
- ✓ l'elevata <u>sostenibilità ambientale</u>: efficienza energetica, ridotte emissioni in atmosfera

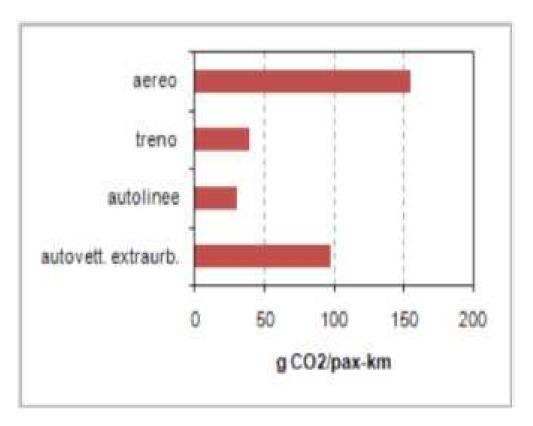


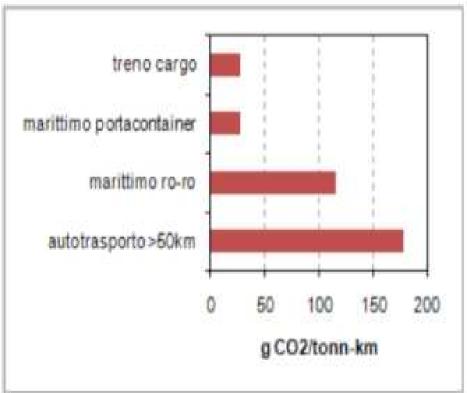
SOSTENIBILITA' AMBIENTALE DEL TRASPORTO FERROVIARIO

La modalità ferroviaria è caratterizzata da <u>un'elevata efficienza</u> <u>energetica</u> del trasporto.

A livello medio nazionale, il treno consuma circa la metà di un'autovettura e un terzo dell'aereo, per unità di traffico prodotta; nel caso del trasporto merci, il rapporto fra consumo su ferro e consumo su gomma scende a meno di 0,20.

M


SOSTENIBILITA' AMBIENTALE DEL TRASPORTO FERROVIARIO


Altro aspetto importante relativo alla sostenibilità ambientale è l'inquinamento atmosferico.

in termini di emissioni specifiche di ${\rm CO_2}$, le prestazioni del trasporto ferroviario risultano ancor più vantaggiose, nel confronto con le altre modalità, di quanto non si verifichi in termini di consumi energetici; ciò è da attribuirsi all'impiego dell'energia elettrica come principale fonte di alimentazione, che presenta un valore del rapporto fra anidride carbonica prodotta ed energia consumata più basso di quello dei combustibili fossili (petrolio) a cui ricorrono le modalità non ferroviarie.

SOSTENIBILITA' AMBIENTALE DEL TRASPORTO FERROVIARIO

VEICOLI FERROVIARI - Possibili classificazioni

- ☐ in relazione alla struttura:
 - ✓ veicoli ad assi
 - √ veicoli a carrelli
- □in relazione alla capacità di trazione:
 - ✓ veicoli motori
 - o locomotive (solo funzione di trazione)
 - o automotrici (anche funzione di carico)
 - √ veicoli rimorchiati
- □in relazione alla alimentazione:
 - ✓ motori elettrici
 - ✓ motori diesel
- □in relazione al carico trasportato:
 - ✓ passeggeri
 - ✓ merci

