

Corso di Laurea in Scienze Economiche L-33

Matematica per l'Economia SECS-S/06 - 8 CFU

Prof. Massimiliano Ferrara

massimiliano.ferrara@unirc.it massimiliano.ferrara@unibocconi.it

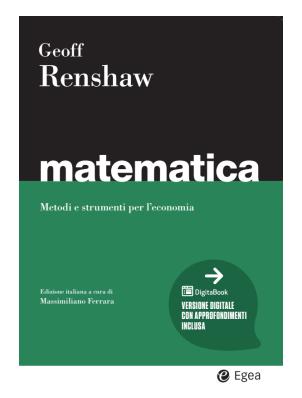
A.A. 2022/2023

Geoff Renshaw

Matematica. Metodi e strumenti per l'economia

Edizione italiana a cura di Massimiliano Ferrara

Capitolo 6 – Derivate e calcolo differenziale



Il rapporto incrementale

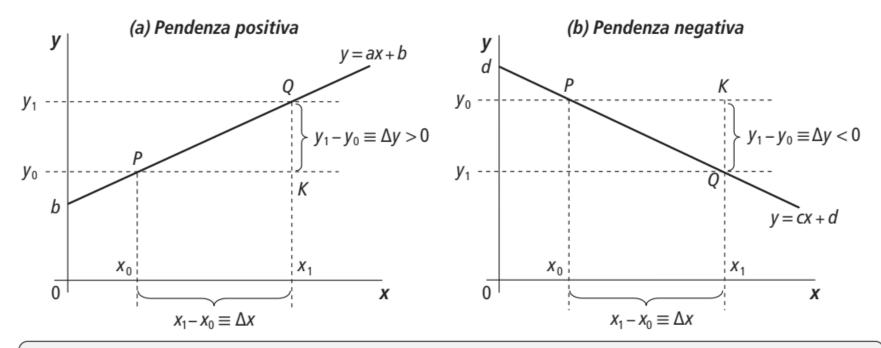
Facciamo riferimento alle figg. 6.1a e 6.1b. Quando ci spostiamo da P a Q, misuriamo la pendenza di y=ax+b come variazione di y, Δy , diviso la variazione di x, Δx .

Tale rapporto tra variazioni, $\frac{\Delta y}{\Delta x}$, è il rapporto incrementale (Regola 6.1).

Esso misura la pendenza, o coefficiente angolare, della retta passante per $P \in Q$.

In fig. 6.1a il rapporto incrementale è positivo perché Δy è positiva; in fig. 6.1b è negativo perché Δy è negativa.

Figura 6.1 Rapporto incrementale per una funzione lineare crescente e una funzione lineare decrescente



Il rapporto $\frac{\Delta y}{\Delta x}$ fra l'incremento delle ordinate e l'incremento delle ascisse, misurati fra i punti P e Q, è detto rapporto incrementale. In Figura 6.1(a) il rapporto incrementale misura la pendenza della retta y = ax + b; è positivo perché Δx e Δy sono incrementi positivi. In Figura 6.1(b) il rapporto incrementale misura la pendenza della retta y = cx + d; è negativo perché Δy è negativo.

Pendenza di una curva

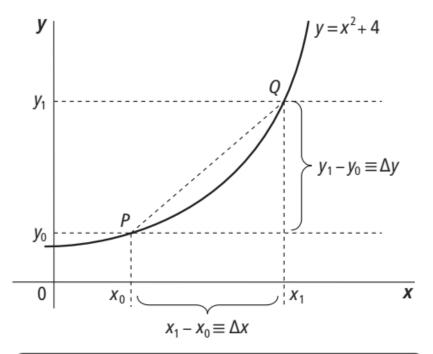
Facciamo riferimento alle figg. 6.2 e 6.3. $\frac{\Delta y}{\Delta x}$ è lo stesso in entrambe, ma le curve sono molto diverse.

Il rapporto incrementale, perciò, non è una misura molto soddisfacente della pendenza di una funzione non lineare.

Un altro problema è che il rapporto incrementale varia con la distanza fra *P* e *Q*.

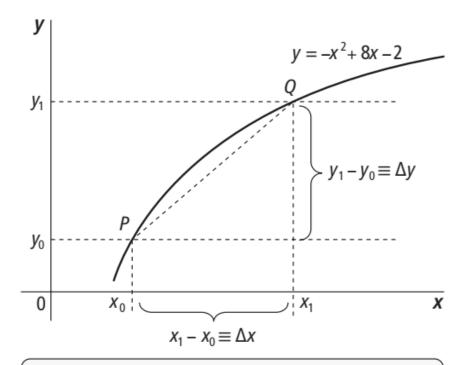
Questa mancanza di precisione della misura di una pendenza è stata oggetto di studio da parte dei matematici per secoli, fino a che non è stata risolta da Newton e Leibniz.

Figura 6.2 Il rapporto incrementale come misura della pendenza di $y = x^2 + 4$



Il rapporto incrementale $\frac{\Delta y}{\Delta x}$ rappresenta la pendenza del segmento tratteggiato PQ e misura soltanto la pendenza media di $y = x^2 + 4$ fra i punti P e Q.

Figura 6.3 Il rapporto incrementale come misura della pendenza di $y = -x^2 + 8x - 2$



La pendenza media della funzione $y = -x^2 + 8x - 2$ fra i punti $P \in Q$ è la stessa del grafico in Figura 6.2, benché i due grafici siano molto diversi per forma.

La tangente come misura della pendenza di una curva

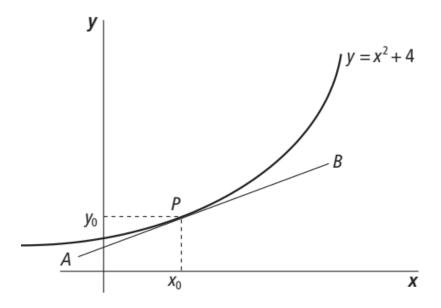
La soluzione proposta da Newton e Leibniz era di utilizzare la pendenza della retta tangente alla curva in *P* come misura della pendenza della curva in tale punto (fig. 6.4).

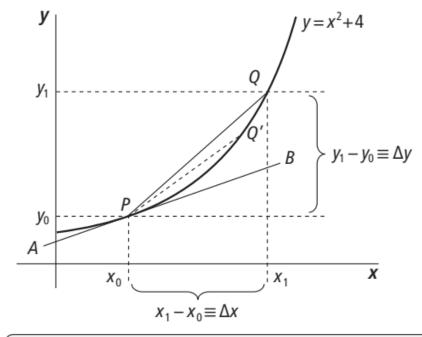
Per misurare la pendenza della tangente si determina $\frac{\Delta y}{\Delta x}$, quindi si fa tendere Q a P (fig. 6.5). $\frac{\Delta y}{\Delta x}$ allora tende a un valore limite, che è la pendenza cercata.

Scriviamo questo limite come $\frac{dy}{dx}$ e lo chiamiamo «derivata» della funzione.

Figura 6.4 La pendenza della retta tangente in P misura la pendenza della curva $y = x^2 + 4$ in tale punto

Figura 6.5 Determinazione della pendenza della tangente alla curva $y = x^2 + 4$





La pendenza della tangente *AB* in *P* è univoca. Una tangente con pendenza superiore o inferiore a quella di *AB* toccherebbe la curva in un punto avente ascissa a destra o a sinistra di quella di *P*.

Man mano che Δx si avvicina a zero, Q discende lungo la curva avvicinandosi a P e $\frac{\Delta y}{\Delta x}$ (la pendenza della retta PQ) tende alla pendenza della tangente AB.

La tangente come misura della pendenza: esempio

Sia data $y = x^2 + 4$

$$\frac{\Delta y}{\Delta x} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{[x_1^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_1 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4] - [x_0^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}{x_0 - x_0} = \frac{[(x_0 + \Delta x)^2 + 4]}$$

$$= \frac{[x_0^2 + 2x_0\Delta x + (\Delta x)^2 + 4] - [x_0^2 + 4]}{\Delta x} = \frac{2x_0\Delta x + (\Delta x)^2}{\Delta x} = 2x_0 + \Delta x$$

Per $Q \rightarrow P$, $\Delta x \rightarrow 0$, perciò $2x_0 + \Delta x \rightarrow 2x_0$

Pertanto $\frac{dy}{dx} = 2x_0$ è la derivata di $y = x^2 + 4$ in P.

Regole di derivazione

«Differenziare» significa trovare la derivata di una funzione.

Potremmo determinare la derivata basandoci sulla definizione, ma sarebbe lungo. Per fortuna, esistono delle regole pratiche.

Premessa: per ogni funzione y=f(x) possiamo scrivere la derivata della funzione stessa come $\frac{\mathrm{d}y}{\mathrm{d}x}$ o come f'(x). Questa seconda notazione è ovviamente più compatta.

Regole di derivazione 1-4

1.	Potenza	$y = x^n$	$\frac{\mathrm{d}y}{\mathrm{d}x} = nx^{n-1}$
2.	Costante moltiplicativa	y = Af(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = Af'(x)$
3.	Costante additiva	y = f(x) + B	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
4.	Somme o differenze	y = f(x) + g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) + g'(x)$

Esempi delle regole 1-4

1. Regola della potenza: se $y=x^3$, abbiamo n=3, per cui $\frac{\mathrm{d}y}{\mathrm{d}x}=3x^{3-1}=3x^2$

2. Costante moltiplicativa: se $y = 10x^3$, $\frac{dy}{dx} = 10 \times 3x^2 = 30x^2$

3. Costante additiva: se $y = x^3 + 50$, $\frac{dy}{dx} = 3x^2$

4. Somma o differenza: $y = x^3 + x^2$, $\frac{dy}{dx} = 3x^2 + 2x$

Regole di derivazione 5-8

5.	Funzione di funzione (funzione composta)	y = f(u)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$
		dove u = g(x)	
6.	Prodotto	y = uv	dy dv du
		dove <i>u</i> e <i>v</i> sono	$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
		funzioni di x	are are
7.	Quoziente	$y = \frac{u}{v}$ dove u e v sono funzioni di x	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$
8.	Funzione inversa	y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$

Esempi delle regole 5-8

5. Funzione di funzione: sia data $y = (x^2 + 5x)^3$

Creiamo una nuova variabile
$$u = x^2 + 5x$$
 cosicché $\frac{du}{dx} = 2x + 5$

Ora abbiamo
$$y = u^3$$
 per cui $\frac{dy}{du} = 3u^2$

Pertanto:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 3u^2(2x+5) = 3(x^2+5x)^2(2x+5)$$

6. Prodotto: sia data $y = (x^2 + 1)(x^3 + x^2)$

Creiamo due nuove variabili: $u = x^2 + 1$ e $v = x^3 + x^2$

Perciò:
$$\frac{du}{dx} = 2x e \frac{dv}{dx} = 3x^2 + 2x$$

Pertanto:
$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} = (x^2 + 1)(3x^2 + 2x) + (x^3 + x^2)(2x)$$

7. Quoziente: sia data $y = \frac{x^2+1}{x^3+x^2}$

Creiamo due nuove variabili: $u = x^2 + 1$ e $v = x^3 + x^2$

Perciò:
$$\frac{du}{dx} = 2x$$
 e $\frac{dv}{dx} = 3x^2 + 2x$

Pertanto:
$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} =$$

$$=\frac{(x^3+x^2)2x-(x^2+1)(3x^2+2x)}{(x^3+x^2)^2}$$

8. Funzione inversa

Data
$$y = x^2$$
, $\frac{dy}{dx} = 2x$ per cui $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{2x}$

