Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

ANALISI MATEMATICA I e ANALISI MATEMATICA II

Corso Ingegneria Industriale
Curriculum BIOINGEGNERIA
Orientamento Orientamento unico
Anno Accademico 2021/2022

Modulo: ANALISI MATEMATICA II

Corso Ingegneria Industriale
Curriculum BIOINGEGNERIA
Orientamento Orientamento unico
Anno Accademico 2021/2022
Crediti 7
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Secondo semestre
Ore aula 56
Attività formativa Attività formative di base

Canale unico

Docente GIUSEPPINA BARLETTA
Obiettivi Il corso si propone di fornire allo Studente i concetti fondamentali del calcolo differenziale ed integrale per funzioni reali di una variabile reale. A tal fine, le definizioni e i principali risultati dell’analisi matematica di base, relativi ai concetti di limite, derivata ed integrale, verranno introdotti a partire dalle funzioni elementari per passare poi ad approfondimenti mirati che permetteranno lo studio di problematiche anche più complesse derivanti dalle scienze applicate.
L'obiettivo generale del corso è quello di facilitare l'Allievo nell'acquisizione di un appropriato livello di autonomia nella conoscenza teorica e nell’utilizzo degli strumenti analitici di base, di stimolare la sua capacità di riflessione, di calcolo e di comunicare le nozioni acquisite attraverso un linguaggio scientifico adeguato.
Programma CFU I. Funzioni reali di più variabili reali. Elementi di topologia nel piano e nello spazio. Limite e continuità. Teoremi di esistenza degli zeri e di Weierstrass. Derivate parziali, successive, direzionali. Teorema di Schwarz. Gradiente. Differenziale. Funzioni composte. Formula di Taylor del secondo ordine.
Massimi e minimi relativi, teorema di Fermat. Condizioni sufficienti per un estremo relativo. Ricerca del massimo e del minimo assoluto.
CFU II e III. Integrale generale di un’equazione differenziale ordinaria (E.D.O.). Problema di Cauchy e ai limiti. Esistenza e unicità locale e globale. Il teorema di Cauchy di esistenza e unicità locale e globale. E.D.O. a variabili separabili. Proprietà delle E.D.O. lineari. E.D.O. lineari del primo e del secondo ordine. Metodi di somiglianza e di variazione delle costanti.
Successioni di funzioni: convergenza puntuale ed uniforme. Serie di funzioni: convergenza puntuale, uniforme e totale. Teoremi della continuità, della derivabilità, del passaggio al limite sotto il segno di integrale. Serie di potenze e di Fourier.
CFU IV. Integrali doppi e tripli. Integrali su domini normali. Integrale di funzioni continue. Formule di riduzione e cambiamento di variabili per gli integrali doppi e tripli. Volume di un solido di rotazione.
CFU V e VI. Elementi di calcolo vettoriale. Curve regolari. Lunghezza di una curva. Curve orientate. Ascissa curvilinea. Integrale curvilineo di una funzione. Versore tangente, normale e binormale. Curvature e torsione.
Forme differenziali. Campi vettoriali. Integrale di una forma differenziale Campi conservativi e potenziale. Lavoro di un campo conservativo. Superficie regolari. Piano tangente e versore normale. Area di una superficie. Integrali di superficie. Formule di Gauss-Green nel piano. Area di un dominio regolare. Teorema della divergenza e formula di Stokes. Formula di integrazione per parti.
CFU VII Uso di semplici software per lo svolgimento di alcuni esercizi, tra cui: calcolo di integrali, risoluzione di equazioni differenziali, determinazione della terna intrinseca.
Testi docente M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica, McGraw-Hill, Milano 2007.
N. Fusco, P. Marcellini, C. Sbordone, Elementi di Analisi Matematica due, Liguori Editore, Napoli 2001.
Claudio Canuto, Anita Tabacco, Mathematical Analysis II, Springer 2008.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Giuseppina Barletta
Il ricevimento studenti si svolgera' ogni martedi e giovedi dalle ore 14 alle ore 15, sia in presenza (uno studente per volta) che sulla piattaforma Teams.
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1692263

Fax +39 0965.1692201

Indirizzo e-mail


Biblioteca

Tel +39 0965.1692206

Fax +39 0965.1692206

Indirizzo e-mail

Ufficio didattica

Tel +39 0965.1692440/212

Fax +39 0965.1692220

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Segreteria Amministrativa

Tel +39 0965.1692257/261/241

Fax +39 0965.1692201

Indirizzo e-mail


Ufficio orientamento

Tel +39 0965.1692386/212

Fax +39 0965.1692220

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram