Obiettivi |
Il corso ha l’obiettivo di avviare lo studente al trattamento (o elaborazione) di segnali unidimensionali e multidimensionali (analisi e sintesi temporale, spaziale, frequenziale, tempo-frequenziale), ivi incluse le immagini di provenienza da diversi sensori. L’elaborazione dei segnali verte su concetti di base di analisi numerica con l'ausilio di tecniche statistiche e analitico-numeriche implementabili al calcolatore. Obiettivo fondamentale del corso è la comprensione e l’utilizzo di “tools” e strumenti standard a livello internazionale per la soluzione al calcolatore di problemi complessi principalmente di natura stocastica. In particolare, è suggerito l’uso estensivo di MatLab, o codici equivalenti, anche attraverso la presentazione di esercitazioni specifiche.
Obiettivi formativi specifici: Conoscenza dei principali modelli deterministici e probabilistici per i segnali di natura ambientale Conoscenza delle principali tecniche algoritmiche per il trattamento di segnali ambientali Capacità di utilizzare codici di calcolo per l’elaborazione di segnali ambientali Abilità di strutturare un problema complesso di modellistica ambientale in termini di approcci computazionali Conoscenza di terminologia specifica internazionale per le tematiche trattate.
Modalità di valutazione: La prova d'esame consiste in una prova orale articolata in diversi aspetti, focalizzati alla verifica della maturazione complessiva del candidato e all’accertamento del raggiungimento degli obiettivi specifici. La prova ha l’obiettivo di misurare le capacità critiche sviluppate dallo studente e il livello di approfondimento della conoscenza avanzata degli algoritmi di trattamento dei segnali per applicazioni ambientali. La prova orale consiste anche nella discussione pubblica di un elaborato di corso preparato dallo studente di concerto col docente, nel corso della quale si accertano le capacità comunicative acquisite con riferimento alla presentazione di ricerche o progetti sviluppati nel corso. Nel corso della presentazione, il candidato dovrà altresì mostrare la capacità di lavorare in team su applicazioni specifiche del settore.
|
Programma |
Introduzione al trattamento dei Segnali (CFU 1)
Generalità sul trattamento dei segnali, segnali analogici, campionamento e conversione AD e DA, segnali a tempo discreto (numerici), equazioni alle differenze lineari a coefficienti costanti, rappresentazione nel dominio del tempo e della frequenza, segnali aleatori multi-dimensionali, statistiche di ordine superiore al secondo, processi stocastici, concetti di teoria della stima, metodo della massima verosimiglianza, stima del minimo errore quadratico medio, metodo della massima probabilità a posteriori, elementi di teoria dell’informazione, entropia informazionale, informazione mutua, negentropia, correntropia, metodo di stima a massima entropia, metodi di ottimizzazione. Rappresentazione di sistemi digitali mediante grafi e schemi a blocchi, strutture di rete fondamentali per sistemi FIR e IIR.
Algoritmi di Soft Computing e di Analisi Multirisoluzione e Multidimensionale (CFU 2)
Sistemi adattivi, stima del gradiente, metodi iterativi, apprendimento Hebbiano, reti auto-organizzanti. Pattern recognition: formulazioni, classificatori lineari e non lineari, trattamento dell’incertezza, problemi rappresentativi in diversi ambiti di ricerca. Algoritmi avanzati per l’elaborazione dei segnali, studio serie temporali, Analisi nel dominio della frequenza, Trasformata di Fourier, Short-Time Fourier Transform, analisi di segnali nel dominio tempo-frequenza, elaborazione di segnali non stazionari, segnali e sistemi non lineari, trasformata Wavelet Continua e Discreta, decomposizione Wavelet, applicazioni pratiche della trasformata Wavelet, Principal Component Analysis (PCA), Independent Component Analysis (ICA), applicazioni PCA e ICA.
Implementazione numerica degli algoritmi (CFU 1)
Introduzione al MATLAB, nozioni preliminari, potenzialità e limiti del software, programmare con l’editor di MATLAB; introduzione all’uso dei Toolboxes: Signal Processing, Wavelet, Algoritmi PCA e ICA, EEGLAB, ICA-lab, FAST-ICA.
Introduzione ai segnali ambientali (CFU 1)
Nozione di segnale ambientale; tecniche di rilievo di segnali e dati ambientali; manipolazione di database di natura ambientale; elementi di data mining; gestione delle informazioni e dati ambientali.
Tecniche di elaborazione dei segnali ambientali (CFU1)
Sistemi di acquisizione e conversione A/D; interfacce di acquisizione; sensori per la registrazione di segnali ambientali; raccolta e selezione di campioni; sistemi statistici per il trattamento di dati ambientali; trattamento outliers; Teoria della decisione statistica. Implementazione di algoritmi per l’analisi multi-risoluzione e multidimensionale di segnali ambientali; modelli per la simulazione di sistemi ambientali; elaborazione numerica di segnali ambientali; rumore; progettazione ed implementazione di circuiti e sistemi per il trattamento di segnali ambientali esempi di dati meteorologici e satellitari; esercitazioni di laboratorio. |