Corso | Ingegneria Industriale |
Curriculum | INGEGNERIA GESTIONALE |
Orientamento | Orientamento unico |
Anno Accademico | 2021/2022 |
Corso | Ingegneria Industriale |
Curriculum | INGEGNERIA GESTIONALE |
Orientamento | Orientamento unico |
Anno Accademico | 2021/2022 |
Crediti | 7 |
Settore Scientifico Disciplinare | MAT/05 |
Anno | Primo anno |
Unità temporale | Secondo semestre |
Ore aula | 56 |
Attività formativa | Attività formative di base |
Docente | GIUSEPPINA BARLETTA |
Obiettivi | Il corso si propone di fornire allo Studente i concetti fondamentali del calcolo differenziale ed integrale per funzioni reali di una variabile reale. A tal fine, le definizioni e i principali risultati dell’analisi matematica di base, relativi ai concetti di limite, derivata ed integrale, verranno introdotti a partire dalle funzioni elementari per passare poi ad approfondimenti mirati che permetteranno lo studio di problematiche anche più complesse derivanti dalle scienze applicate. L'obiettivo generale del corso è quello di facilitare l'Allievo nell'acquisizione di un appropriato livello di autonomia nella conoscenza teorica e nell’utilizzo degli strumenti analitici di base, di stimolare la sua capacità di riflessione, di calcolo e di comunicare le nozioni acquisite attraverso un linguaggio scientifico adeguato. |
Programma | CFU I. Funzioni reali di più variabili reali. Elementi di topologia nel piano e nello spazio. Limite e continuità. Teoremi di esistenza degli zeri e di Weierstrass. Derivate parziali, successive, direzionali. Teorema di Schwarz. Gradiente. Differenziale. Funzioni composte. Formula di Taylor del secondo ordine. Massimi e minimi relativi, teorema di Fermat. Condizioni sufficienti per un estremo relativo. Ricerca del massimo e del minimo assoluto. CFU II e III. Integrale generale di un’equazione differenziale ordinaria (E.D.O.). Problema di Cauchy e ai limiti. Esistenza e unicità locale e globale. Il teorema di Cauchy di esistenza e unicità locale e globale. E.D.O. a variabili separabili. Proprietà delle E.D.O. lineari. E.D.O. lineari del primo e del secondo ordine. Metodi di somiglianza e di variazione delle costanti. Successioni di funzioni: convergenza puntuale ed uniforme. Serie di funzioni: convergenza puntuale, uniforme e totale. Teoremi della continuità, della derivabilità, del passaggio al limite sotto il segno di integrale. Serie di potenze e di Fourier. CFU IV. Integrali doppi e tripli. Integrali su domini normali. Integrale di funzioni continue. Formule di riduzione e cambiamento di variabili per gli integrali doppi e tripli. Volume di un solido di rotazione. CFU V e VI. Elementi di calcolo vettoriale. Curve regolari. Lunghezza di una curva. Curve orientate. Ascissa curvilinea. Integrale curvilineo di una funzione. Versore tangente, normale e binormale. Curvature e torsione. Forme differenziali. Campi vettoriali. Integrale di una forma differenziale Campi conservativi e potenziale. Lavoro di un campo conservativo. Superficie regolari. Piano tangente e versore normale. Area di una superficie. Integrali di superficie. Formule di Gauss-Green nel piano. Area di un dominio regolare. Teorema della divergenza e formula di Stokes. Formula di integrazione per parti. CFU VII Uso di semplici software per lo svolgimento di alcuni esercizi, tra cui: calcolo di integrali, risoluzione di equazioni differenziali, determinazione della terna intrinseca. |
Testi docente | M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica, McGraw-Hill, Milano 2007. N. Fusco, P. Marcellini, C. Sbordone, Elementi di Analisi Matematica due, Liguori Editore, Napoli 2001. Claudio Canuto, Anita Tabacco, Mathematical Analysis II, Springer 2008. |
Erogazione tradizionale | Sì |
Erogazione a distanza | No |
Frequenza obbligatoria | No |
Valutazione prova scritta | Sì |
Valutazione prova orale | Sì |
Valutazione test attitudinale | No |
Valutazione progetto | No |
Valutazione tirocinio | No |
Valutazione in itinere | No |
Prova pratica | No |
Descrizione | Avviso | |
---|---|---|
Ricevimenti di: Giuseppina Barletta | ||
Il ricevimento studenti si svolgera' ogni martedi e giovedi dalle ore 14 alle ore 15, sia in presenza (uno studente per volta) che sulla piattaforma Teams. |
|
Cerca nel sito
Posta Elettronica Certificata
Direzione
Tel +39 0965.1692263
Fax +39 0965.1692201
Biblioteca
Tel +39 0965.1692206
Fax +39 0965.1692206
Ufficio didattica
Tel +39 0965.1692440/212
Fax +39 0965.1692220
Segreteria studenti
Tel +39 0965.1691475
Fax +39 0965.1691474
Segreteria Amministrativa
Tel +39 0965.1692257/261/241
Fax +39 0965.1692201
Ufficio orientamento
Tel +39 0965.1692386/212
Fax +39 0965.1692220