Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

6 cfu affini-II ANNO Progettazione di strutture civili, infrastr. idrauliche e sistemi per energie rinn

Corso Ingegneria Civile
Curriculum PROGETTAZIONE DI STRUTTURE CIVILI, DI INFRASTRUTTURE IDRAULICHE E DI SISTEMI PER LE ENERGIE RINNOVABILI
Orientamento Orientamento unico
Anno Accademico 2021/2022

Modulo: METODI E MODELLI MATEMATICI PER L'INGEGNERIA

Corso Ingegneria Civile
Curriculum PROGETTAZIONE DI STRUTTURE CIVILI, DI INFRASTRUTTURE IDRAULICHE E DI SISTEMI PER LE ENERGIE RINNOVABILI
Orientamento Orientamento unico
Anno Accademico 2021/2022
Crediti 6
Settore Scientifico Disciplinare MAT/05
Anno Secondo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Erogazione 1001162 METODI E MODELLI MATEMATICI PER L'INGEGNERIA in Ingegneria Civile LM-23 CANDITO PASQUALE
Docente Pasquale CANDITO
Obiettivi Il corso si propone di presentare allo Studente i principali metodi elementari per lo studio delle equazioni differenziali alle derivate parziali, strettamente legati alle tecniche di approssimazione numerica e utili per risolvere quantitativamente problemi di interesse ingegneristico, quali ad esempio, il metodo di Galerkin-elementi finiti per problemi di tipo ellittico e il metodo delle differenze finite per equazioni paraboliche ed iperboliche. L'obiettivo generale del corso è quello di introdurre tali tematiche partendo da semplici problemi derivanti dalle scienze applicate e seguendo un medesimo schema ricorrente: analisi matematica del problema, approssimazione numerica, analisi dei risultati.

Modalità di valutazione

Il voto della prova orale sarà attribuito secondo il seguente criterio di valutazione:
30 - 30 e lode: conoscenza completa, approfondita e critica degli argomenti, ottima proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
26 - 29: conoscenza completa e approfondita degli argomenti, piena proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;
24 - 25: conoscenza degli argomenti con un buon grado di apprendimento, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;
21 - 23: conoscenza degli argomenti, ma mancata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, limitata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
18 - 20: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, capacità interpretativa sufficiente, capacità di applicare le conoscenze basilari acquisite in contesti elementari;
Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso.

ENGLISH VERSION

The course aims to present to the Student with the main elementary methods for the study of partial differential equations, closely related to numerical approximation techniques and useful for quantitatively solving problems of engineering interest, such as the Galerkin-finite element method for elliptic problems and the finite difference method for parabolic and hyperbolic equations. The general task of the course is to introduce these topics starting from simple problems deriving from the applied sciences and following a same recurring scheme: mathematical analysis of the problem, numerical approximation, analysis of the results.

The oral exam grade will be assigned according to the following evaluation criteria:
30 - 30 cum laude – exceptional: complete, in-depth and critical knowledge of the topics, excellent linguistic property, complete and original interpretative ability, full ability to independently apply the knowledge to solve the proposed problems;
26 – 29 - very good to satisfactory: complete and in-depth knowledge of the topics, full ownership of language, complete and effective interpretive ability, able to independently apply the knowledge to solve the proposed problem;
24 – 25 – good to adequate: knowledge of topics with a good degree of learning, good language property, correct and safe interpretive ability, ability to correctly apply most of the knowledge to solve the proposed problems;
21 – 23 - poor: knowledge of the topics, but lack of mastery of the same, satisfactory property of language, correct interpretative ability, limited ability to independently apply the knowledge to solve the proposed problems;
18 – 20 - barely adequate to minimum passing grade: basic knowledge of the main topics, basic knowledge of technical language, sufficient interpretive ability, ability to apply the basic knowledge acquired in elementary contexts;
Insufficient - rejected: the student does not have an acceptable knowledge of the topics covered during the course.
Programma Introduzione ai metodi variazionali per lo studio delle equazioni differenziali: motivazioni, esempi. Necessità della risoluzione numerica. Spazi metrici e spazi normati. Spazi funzionali: principali esempi Concetti fondamentali. Disuguaglianze di Young, Hölder e Minkowski. Successioni in uno spazio metrico. Funzioni continue. Spazi metrici completi. Spazi di Banach.Spazi di Hilbert. Regola del parallelogramma. Disuguaglianza di Cauchy-Schwarz. Cenni alla teoria della misura e dell’integrazione secondo Lebesgue. Derivata debole.Spazi di Sobolev. Disuguaglianza di Poincaré. Disuguaglianze di traccia. (I-II CFU)
Operatori lineari. Spazi duali. Forme bilineari, problemi variazionali astratti. Teorema di Lax-Milgram. Forme bilineari simmetriche. Approssimazione e metodo di Galerkin-elementi finiti: esistenza, unicità e stabilità della soluzione discreta, convergenza. Lemma di Céa. Equazioni ellittiche. Soluzioni classiche, forti e deboli (o variazionali). Formulazione variazionale di un problema di diffusione, trasporto e reazione con condizioni al bordo di Dirichlet, di Neumann, miste e di Robin. Equazioni generali in forma di divergenza. (III-IV CFU).
Equazioni paraboliche. Formulazione debole e sua approssimazione. Stime a priori. Analisi del problema semi-discreto. Il metodo delle differenze finite per equazioni iperboliche. Analisi dei metodi alle differenze finite. Equazioni equivalenti e analisi dell’errore (V-VI CFU).

English Version

Introduction to variational methods for the study of differential equations: motivation, examples. Needs of the numerical solution. Metric and normed spaces. Basic concepts. Young’s inequality, Hölder’s inequality, Cauchy-Schwarz’s inequality, Minkowski’s inequality. Sequences in a metric space. Continuous functions. Compact metric spaces. Complete metric spaces. Banach spaces. Functional spaces: some examples.
Hilbert spaces. Parallelogram rule. Introduction to the Lebesgue measure and integration’s theory. Weak derivative. Sobolev spaces. Poincaré inequality. Inequalities trace. (I-II CFU)
Linear operators. Dual spaces. Bilinear operators, abstract variational problems. Lax-Milgram theorem. Symmetric bilinear operators. Approximation and Galerkin-finite element methods for elliptic differential equations: existence, uniqueness and stability of the discrete solution, convergence. Céa lemma.
Elliptic equations. Classical, strong and weak (or variational) solutions. Variational approach to a diffusion, transport and reaction, with Dirichlet or Neumann or mixed or Robin boundary conditions. General equations in divergence form. (III-IV CFU)
Parabolic equations. Weak formulation and its approximation. A priori estimates. Semi-discrete problem analysis. The finite difference method for hyperbolic equations. Analysis of finite difference methods. Equivalent equations and error analysis (V-VI CFU).
Testi docente H. Brezis, Analisi Funczionale. Teoria e applicazioni, Liguori Editore 2002.
P. Cannarsa, T. D'Aprile, Introduzione alla teoria della misura e all’analisi funzionale, Springer-Verlag, Milano 2008.
S. Salsa, Equazioni a derivate parziali (Metodi, modelli e applicazioni), Springer.
A. Quarteroni, Modellistica Numerica per Problemi Differenziali. Springer, 2008.
V. Romano, Metodi matematici per i corsi di ingegneria, Città Studi Edizioni (2018)
L. Formaggia, F. Saleri, A. Veneziani, Applicazioni ed esercizi di modellistica numerica per problemi differenziali. Springer Verlag (collana Unitext), 2005.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: MODELLI COSTITUTIVI E NUMERICI PER L'INGEGNERIA

Corso Ingegneria Civile
Curriculum PROGETTAZIONE DI STRUTTURE CIVILI, DI INFRASTRUTTURE IDRAULICHE E DI SISTEMI PER LE ENERGIE RINNOVABILI
Orientamento Orientamento unico
Anno Accademico 2021/2022
Crediti 6
Settore Scientifico Disciplinare MAT/07
Anno Secondo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Docente PASQUALE GIOVINE
Obiettivi La modellazione matematica contribuisce ad una approfondita comprensione della realtà fisica, consentendo di evidenziare aspetti e comportamenti spesso poco noti. Essa ha lo scopo di rendere intelligibile, attraverso il rigore del formalismo matematico, la realtà fisica dei fenomeni. La disciplina si propone di dare all’allievo la capacità di creare un modello matematico di un sistema fisico attraverso l’individuazione delle variabili di stato e la successiva derivazione di un’equazione di evoluzione, il cui problema sarà risolto mediante opportuni metodi numerici.
Usando gli strumenti del Calcolo Numerico utili alla risoluzione di problemi di interesse nel campo dell’Ingegneria, e con l’utilizzo del software Matlab e/o Comsol, lo studente imparerà ad affrontare e a risolvere nel modo più corretto ed efficiente alcuni problemi matematici di ampia portata.
- Risultati attesi
Conoscenza e capacità di comprensione: riconoscere e trattare qualitativamente modelli differenziali;
Capacità di applicare conoscenza e comprensione: combinare un insieme di conoscenze metodologiche nell’ambito della matematica numerica con un insieme di abilità informatiche relative all’uso di un linguaggio di programmazione versatile ed efficace, quale il MatLab e/o il Comsol;
Autonomia di giudizio: valutazione e validazione di un modello matematico;
Abilità comunicative: comunicazione verbale e scritta, elaborazione e presentazione di problemi, capacità di lavorare in gruppo, trasmissione e divulgazione di informazioni usando il linguaggio specifico della disciplina;
Capacità d’apprendimento: creare un modello matematico di un sistema fisico attraverso l’individuazione delle variabili di stato e la successiva derivazione di un’equazione di evoluzione, il cui problema sarà risolto mediante gli opportuni metodi numerici.

Modalità di accertamento e valutazione:
L’esame si svolgerà in due fasi. La prima fase consiste nello svolgimento di una prova scritta, dall’esito vincolante alla successiva prova orale; la prova scritta consta di 3 quesiti a risposta aperta, del valore di circa 5 punti ciascuno, e verte sulla risoluzione di uno o più problemi pratici inerenti al moto ed all’equilibrio dei sistemi continui, come anche alla propagazione del calore. La prova scritta ha la durata massima di due ore e trenta minuti e lo Studente può fare uso di manuali matematici oltre che della calcolatrice non programmabile.
La prova orale verte invece su un colloquio riguardante i fondamenti teorici necessari alla risoluzione degli stessi quesiti presenti nella prova scritta, e sulle basi teoriche necessarie per la costruzione di modelli matematici, valutando la capacità dello studente di comunicare le nozioni acquisite attraverso un linguaggio scientifico adeguato, nonché l’attitudine all’esposizione dei suddetti contenuti teorici; il relativo punteggio andrà a sommarsi con lo scritto.
La seconda fase consiste nello svolgimento di una prova pratica tendente ad accertare il grado di padronanza degli strumenti numerici necessari alla risoluzione di problemi pratici.
Il voto finale sarà attribuito secondo il seguente criterio di valutazione:
30 - 30 e lode: conoscenza completa, approfondita e critica degli argomenti, ottima proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
26 - 29: conoscenza completa e approfondita degli argomenti, piena proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;
24 - 25: conoscenza degli argomenti con un buon grado di apprendimento, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;
21 - 23: conoscenza adeguata degli argomenti, ma mancata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, limitata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
18 - 20: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, capacità interpretativa sufficiente, capacità di applicare le conoscenze basilari acquisite;
Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso.
Programma Programma dettagliato
1. Operatori matriciali su vettori (0,8 crediti)
Operatori matriciali e componenti cartesiane - Operatore identità - Simboli di Kronecker e di Levi-Civita:
proprietà e relazioni - Prodotto di uno scalare per un operatore matriciale - Somma di due operatori - Prodotto di due operatori - Operatore trasposto - Traccia di un operatore - Determinante di un operatore: espressione del determinante nel caso di n = 3 - Operatore inverso - Operatore complementare - Alcune identità notevoli degli operatori matriciali: alcune identità notevoli nel caso n = 3 - Prodotto scalare fra operatori - Operatori simmetrici e antisimmetrici: vettore duale associato ad un operatore antisimmetrico, parti simmetrica e antisimmetrica di un operatore - Parte deviatorica ed isotropa di un operatore - Operatore di rotazione - Trasformazioni di similitudine ortogonali: invarianti principali di un operatore - Autovalori ed autovettori di un operatore: autovalori ed invarianti delle potenze di un operatore, autovalori ed autovettori per operatori simmetrici, diagonalizzazione di un operatore, teorema di Hamilton-Cayley, relazioni tra invarianti e derivate degli invarianti principali nel caso n = 3 - Prodotto tensoriale: rappresentazione semi- cartesiana di un operatore, autovalori ed autovettori di un prodotto tensoriale nel caso n = 3 - Operatori definiti di segno: criterio di Sylvester, operatore radice quadrata di un operatore definito positivo (s.d.) - Teorema Polare

2. Deformazione, cinematica e forze agenti su un corpo continuo (0,7 crediti)
Configurazione di un continuo - Operatore gradiente di deformazione - Operatori di deformazione - Operatore della deformazione inversa - Coefficiente di dilatazione lineare - Scorrimenti - Coefficiente di dilatazione superficiale - Coefficiente di dilatazione di volume - Corpi incompressibili - Deformazione omogenea - Piccole deformazioni - Velocità ed accelerazione - Operatore gradiente di velocità - Forze in un continuo - Tensore degli sforzi e teorema di Cauchy

3. Leggi di bilancio e principi costitutivi generali in meccanica dei continui (0,8 crediti)
Legge di conservazione della massa: formulazione lagrangiana, formulazione euleriana - Equazioni cardinali: condizioni al contorno - Principio dei lavori virtuali - Leggi generali di bilancio: teorema del trasporto, legge di bilancio dell'energia, leggi di bilancio della termomeccanica in forma euleriana, invarianza galileiana (facoltativo), formulazione lagrangiana delle leggi di bilancio, legge di bilancio della quantità di moto in forma lagrangiana e primo tensore di Piola-Kirchhoff, condizioni al contorno in variabili lagrangiane, legge di bilancio dell’energia in variabili lagrangiane – Interpretazione fisica del tensore di Piola-Kirchhoff, secondo tensore di Piola-Kirchhoff, potenza delle forze interne in termini dei tensori di Piola-Kirchhoff – Esempi di tensore degli sforzi di Cauchy: pressione, tensione semplice, taglio semplice - Principi generali per le leggi costitutive: il principio di indifferenza materiale, il principio di entropia

4. Elasticità e termoelasticità. Fluidi. Conduttore rigido di calore (0,7 crediti)
Corpi elastici: conseguenze del principio di indifferenza materiale nel caso elastico - Corpi termoelastici: principi di indifferenza materiale in termoelasticità, equazioni di campo della termoelasticità, conseguenze del principio di entropia in termoelasticità, materiali isotropi - Principio di dissipazione in elasticità: elasticità non lineare unidimensionale - Elasticità lineare: equazioni dell'elasticità lineare isotropa - Fluidi ideali ed equazioni di Eulero: condizioni al contorno nel caso di fluidi ideali, lavoro delle forze interne in un fluido ideale - Fluidi dissipativi di Fourier-Navier-Stokes - Principio di entropia per un fluido - Alcuni casi particolari di fluidi: fluidi di Fourier-Navier-Stokes incompressibili, fluidi di Eulero compressibili ed equazioni linearizzate - Equazioni dei fluidi nella formulazione Lagrangiana

5. MatLabR e sui La modellazione matematica. Definizione e classificazione dei modelli matematici: variabili di stato, equazioni di stato, parametri e stocasticità. Metodi di modellazione. Validazione dei modelli matematici. Modelli continui: come modellare. Vibrazioni di una corda elastica.
Classificazione: equazioni iperboliche, paraboliche ed ellittiche. Formulazione matematica del problema.

6. Conduzione del calore e metodo alle differenze finite (1.1 crediti). Conduzione del calore e diffusione, inclusi i mezzi porosi. Differenze finite, approssimazione delle derivate, metodi di Eulero in avanti, introduzione alla stabilità, consistenza, convergenza. Problemi ai valori al contorno. Metodo di
Eulero all’indietro. Diffusione stazionaria. Programmi scientifici MatLabR e/o ComsolR.

7. Metodo agli elementi finiti (FEM) (1.2 crediti). Integrazione numerica: regola del rettangolo, del trapezio, di Simpson. Moti assiali delle sbarre. Il FEM per le equazioni differenziali ordinarie (ODE): forma debole, metodo dei residui pesati, metodo di Galerkin. Problemi tempo-dipendenti. Modelli di simulazione
in Biologia. Modelli di flussi di materiali granulari. Applicazioni MatLabR e/o ComsolR.
Testi docente 1. T. Ruggeri: Introduzione alla Termomeccanica dei Continui, 2^ edizione, Monduzzi editoriale, Milano, 2013
2. N. Bellomo, L. Preziosi: Modelling Mathematical Methods and Scientific Computation, CRC Press, Boca Raton, 1995.
3. B. D’Acunto: Computational Partial Differential Equations for Engineering Science, Nova Science Publishers, Inc., New York, 2012.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No
Docente ANTONINO AMODDEO
Obiettivi La modellazione matematica contribuisce ad una approfondita comprensione della realtà fisica, consentendo di evidenziare aspetti e comportamenti spesso poco noti. Essa ha lo scopo di rendere intelligibile, attraverso il rigore del formalismo matematico, la realtà fisica dei fenomeni. La disciplina si propone di dare all’allievo la capacità di creare un modello matematico di un sistema fisico attraverso l’individuazione delle variabili di stato e la successiva derivazione di un’equazione di evoluzione, il cui problema sarà risolto mediante opportuni metodi numerici.
Usando gli strumenti del Calcolo Numerico utili alla risoluzione di problemi di interesse nel campo dell’Ingegneria, e con l’utilizzo del software Matlab e/o Comsol, lo studente imparerà ad affrontare e a risolvere nel modo più corretto ed efficiente alcuni problemi matematici di ampia portata.
- Risultati attesi
Conoscenza e capacità di comprensione: riconoscere e trattare qualitativamente modelli differenziali;
Capacità di applicare conoscenza e comprensione: combinare un insieme di conoscenze metodologiche nell’ambito della matematica numerica con un insieme di abilità informatiche relative all’uso di un linguaggio di programmazione versatile ed efficace, quale il MatLab e/o il Comsol;
Autonomia di giudizio: valutazione e validazione di un modello matematico;
Abilità comunicative: comunicazione verbale e scritta, elaborazione e presentazione di problemi, capacità di lavorare in gruppo, trasmissione e divulgazione di informazioni usando il linguaggio specifico della disciplina;
Capacità d’apprendimento: creare un modello matematico di un sistema fisico attraverso l’individuazione delle variabili di stato e la successiva derivazione di un’equazione di evoluzione, il cui problema sarà risolto mediante gli opportuni metodi numerici.

Modalità di accertamento e valutazione:
L’esame si svolgerà in due fasi. La prima fase consiste nello svolgimento di una prova scritta, dall’esito vincolante alla successiva prova orale; la prova scritta consta di 3 quesiti a risposta aperta, del valore di circa 5 punti ciascuno, e verte sulla risoluzione di uno o più problemi pratici inerenti al moto ed all’equilibrio dei sistemi continui, come anche alla propagazione del calore. La prova scritta ha la durata massima di due ore e trenta minuti e lo Studente può fare uso di manuali matematici oltre che della calcolatrice non programmabile.
La prova orale verte invece su un colloquio riguardante i fondamenti teorici necessari alla risoluzione degli stessi quesiti presenti nella prova scritta, e sulle basi teoriche necessarie per la costruzione di modelli matematici, valutando la capacità dello studente di comunicare le nozioni acquisite attraverso un linguaggio scientifico adeguato, nonché l’attitudine all’esposizione dei suddetti contenuti teorici; il relativo punteggio andrà a sommarsi con lo scritto.
La seconda fase consiste nello svolgimento di una prova pratica tendente ad accertare il grado di padronanza degli strumenti numerici necessari alla risoluzione di problemi pratici.
Il voto finale sarà attribuito secondo il seguente criterio di valutazione:
30 - 30 e lode: conoscenza completa, approfondita e critica degli argomenti, ottima proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
26 - 29: conoscenza completa e approfondita degli argomenti, piena proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;
24 - 25: conoscenza degli argomenti con un buon grado di apprendimento, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;
21 - 23: conoscenza adeguata degli argomenti, ma mancata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, limitata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
18 - 20: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, capacità interpretativa sufficiente, capacità di applicare le conoscenze basilari acquisite;
Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso.
Programma 1. La modellazione matematica (0.7 crediti). Richiami e approfondimenti sui comandi fondamentali di MatLab e sui principali costrutti sintattici. La modellazione matematica. Definizione e classificazione dei modelli matematici: variabili di stato, equazioni di stato, parametri e stocasticità. Metodi di modellazione. Validazione dei modelli matematici. Modelli continui: come modellare. Vibrazioni di una corda elastica. Classificazione: equazioni iperboliche, paraboliche ed ellittiche. Formulazione matematica del problema.

2. Conduzione del calore e metodo alle differenze finite (1.1 crediti). Conduzione del calore e diffusione, inclusi i mezzi porosi. Differenze finite, approssimazione delle derivate, metodi di Eulero in avanti, introduzione alla stabilità, consistenza, convergenza. Problemi ai valori al contorno. Metodo di Eulero all’indietro. Diffusione stazionaria. Programmi scientifici MatLab e/o Comsol.

3. Metodo agli elementi finiti (FEM) (1.3 crediti). Integrazione numerica: regola del rettangolo, del trapezio, di Simpson. Moti assiali delle sbarre. Il FEM per le equazioni differenziali ordinarie (ODE): forma debole, metodo dei residui pesati, metodo di Galerkin. Problemi tempo-dipendenti. Modelli di simulazione in Biologia. Modelli di flussi di materiali granulari. Applicazioni MatLab e/o Comsol.

ENGLISH VERSION
1. The mathematical Modelling (0.7 credits). Recalls and insights into MatLab's core commands and key syntactic constructs. Mathematical modeling. Definition and classification of mathematical models: state variables, state equations, parameters and stochasticity. Modeling methods. Validation of mathematical models. Continuous Models: How to Model. Vibration of an elastic string. Classification: Hyperbolic, parabolic and elliptic equations. Mathematical formulation of problems.

2. Heat conduction and the finite difference method (1.1 credits). Heat conduction and diffusion, including porous media. Finite differences, approximation of derivatives, forward Euler methods, introduction to stability, consistency, convergence. Boundary value problems. Backward Euler method. Steady-state diffusion. MatLab and/or Comsol scientific programs.

3. The finite element method (FEM) (1.2 credits). Numerical integration: rectangle rule, trapezium rule, Simpson's rule. Axial motions of bars. FEM for ordinary differential equations (ODE): weak form, method of weighted residuals, Galerkin method. Time-dependent problems. Simulation models in Biology. Granular material flow models. MatLab and/or Comsol applications.
Testi docente 1. N. Bellomo, L. Preziosi ‘Modelling Mathematical Methods and Scientific Computation’, CRC Press, Boca Raton, 1995.
2. B. D’Acunto ‘Computational Partial Differential Equations for Engineering Science’, Nova Science Publishers, Inc., New York, 2012.

Altri testi:
1. A. Quarteroni, F. Saleri, P. Gervasio ’Calcolo Scientifico’, Springer, Milano, 2012.
2. S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover (New York).
3. S. Salsa, F. Vegni, A. Zaretti, P. Zunino, Invito alle Equazioni a Derivate Parziali, Springer Italia, 2009.
Erogazione tradizionale
Erogazione a distanza
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica

Ulteriori informazioni


Documenti inseriti da Pasquale Giovine

Descrizione Descrizione
SUA Modelli costitutivi e numerici per l’ingegneria (programma) Descrizione

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Pasquale Giovine
ORARIO DI RICEVIMENTO PER GLI STUDENTI

Il ricevimento studenti del Prof. GIOVINE, si svolgera’ nei giorni lunedi' e mercoledi', ore 12.00-13.00 nello studio, eventualmente anche su Microsoft Teams previo appuntamento via email (giovine@unirc.it) o via Teams stesso.
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Modulo: IMPIANTI TERMICI

Corso Ingegneria Civile
Curriculum PROGETTAZIONE DI STRUTTURE CIVILI, DI INFRASTRUTTURE IDRAULICHE E DI SISTEMI PER LE ENERGIE RINNOVABILI
Orientamento Orientamento unico
Anno Accademico 2021/2022
Crediti 6
Settore Scientifico Disciplinare ING-IND/11
Anno Secondo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Erogazione 1000287 IMPIANTI TERMICI in Ingegneria Civile LM-23 NUCARA ANTONINO FRANCESCO
Docente Antonino Francesco NUCARA
Obiettivi Il corso si prefigge di fornire le conoscenze dei problemi fisici e delle tecnologie necessarie per l’analisi dei carichi termici degli edifici e per il dimensionamento degli impianti di riscaldamento e di condizionamento. Vengono inoltre acquisite conoscenze relativamente agli impianti solari termici.
Quale obiettivo ci si prefigge di consentire agli studenti l’acquisizione di conoscenze specifiche: sulle relazioni intercorrenti tra clima esterno, involucro edilizio e microclima indoor, sulle modalità di scambio termico riferite all’energetica edilizia, sulle principali tipologie di impianti di riscaldamento e di condizionamento, sugli impianti solari termici, sui criteri di dimensionamento degli impianti termici e degli impianti solari.
Alla fine del corso lo studente sarà in grado di applicare le conoscenze avendo acquisito gli strumenti metodologici per intervenire con specifica competenza nella progettazione e nella gestione degli impianti termici.

Modalità di valutazione

L’esame consiste in una prova orale su temi inerenti gli argomenti del corso durante la quale verrà discusso un elaborato progettuale sviluppato durante lo svolgimento del corso; la prova orale è volta a verificate le conoscenze relative alle parti di programma non affrontate con l’elaborato progettuale.
La verifica mira a valutare se lo studente abbia conoscenza e comprensione degli argomenti trattati e se abbia acquisito capacità interpretativa e autonomia di giudizio in casi concreti. Lo studente dovrà inoltre dimostrare capacità espositive ed argomentative tali da consentire la trasmissione delle sue conoscenze all'esaminatore.
La soglia di sufficienza si riterrà raggiunta quando lo studente mostri conoscenza e comprensione degli argomenti trattati almeno nelle linee generali e abbia mostrato conoscenze applicative utili per la risoluzione di casi concreti.

Il voto finale sarà attribuito secondo il seguente criterio di valutazione:
30 - 30 e lode: conoscenza completa, approfondita e critica degli argomenti, ottima proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
26 - 29: conoscenza completa e approfondita degli argomenti, piena proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;
24 - 25: conoscenza degli argomenti con un buon grado di apprendimento, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;
21 - 23: conoscenza adeguata degli argomenti, ma mancata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, limitata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
18 - 20: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, capacità interpretativa sufficiente, capacità di applicare le conoscenze basilari acquisite;
Insufficiente: lo studente non possiede una conoscenza accettabile degli argomenti trattati durante il corso.

ENGLISH VERSION

The course aims to provide knowledge of the physical problems and technologies necessary for the analysis of the thermal loads of buildings and for the sizing of heating and air conditioning systems. Furthermore, knowledge is acquired regarding solar thermal systems.
The objective is to allow students to acquire specific knowledge: on the relationships between the external climate, building envelope and indoor microclimate, on the heat exchange methods referring to building energy, on the main typologies of heating and air conditioning systems , on solar thermal systems, on the sizing criteria of heating and air conditioning systems and solar thermal systems.
At the end of the course the student will be able to apply the knowledge in the design and management of the thermal systems, with specific competence and capacity of analise.

The exam consists of an oral exam on topics related to the course topics, during which a project work developed during the course will be discussed; the oral test is aimed at verifying the knowledge relating to the parts of the program not addressed in the project work.
The exam aims to assess whether the student has knowledge and understanding of the topics covered and whether he has acquired interpretative ability and independent judgment in specific cases.
The student must also demonstrate expository and argumentative skills that allow the transmission of his knowledge to the examiner.
The sufficiency threshold will be considered reached if the student shows knowledge and understanding of the topics covered at least in the general lines and shows useful application knowledge for the resolution of concrete cases.

The final vote will be awarded according to the following evaluation criterion:
30 - 30 and honors: complete, in-depth and critical knowledge of the topics, excellent property of language, complete and original interpretative ability, full ability to independently apply the knowledge to solve the proposed problems;
26 - 29: complete and in-depth knowledge of the topics, full ownership of language, complete and effective interpretative ability, able to independently apply the knowledge to solve the proposed problems;
24 - 25: knowledge of topics with a good degree of learning, good language property, correct and safe interpretative ability, capacity of correctly apply most of the knowledge to solve the proposed problems;
21-23: adequate knowledge of the subjects, but lack in the adequate grasp of the issue, satisfactory property of language, correct interpretative ability, limited ability to independently apply the knowledge to solve the proposed problems;
18 - 20: basic knowledge of the main topics, basic knowledge of technical language, sufficient interpretative ability, ability to apply the basic knowledge acquired;
Insufficient: the student does not have an acceptable knowledge of the topics covered during the course.
Programma Psicrometria. Diagramma psicrometrico. Operazioni fondamentali sull'aria umida. Dati climatici per la progettazione degli impianti.
Bilancio energetico di un edificio. Dispersioni termiche dell’edificio. Effetti della massa. Caratteristiche termofisiche degli elementi opachi e trasparenti. Scambi termici per trasmissione attraverso le superfici opache, le superfici trasparenti e verso il terreno. Scambi termici per ventilazione. Carichi termici degli edifici in regime invernale ed in regime estivo.
Tipologie di impianti di riscaldamento e di condizionamento. Impianti ad acqua: monotubo, bitubo, a collettore complanare. Impianti ad aria: a canale singolo, con post riscaldamento di zona, a portata variabile, multizona, a doppio canale. Componenti degli impianti di riscaldamento: caldaie, terminali di erogazione, pompe di circolazione, valvole di regolazione e controllo dei circuiti, camini, vasi di espansione, contatori di calore. Componenti degli impianti di condizionamento: filtri, centrali di trattamento aria, refrigeratori, bocchette e diffusori, torri di raffreddamento.
Generatori di calore. Caldaie tradizionali e a condensazione. Pompe di calore.
Reti di distribuzione. Caratteristiche fluidodinamiche. Regimi di moto. Perdite di carico distribuite e concentrate. Dimensionamento delle tubazioni delle reti di distribuzione ad acqua: metodo a velocità costante ed a perdita specifica di pressione costante. Dimensionamento dei canali di distribuzione dell'aria: metodo a velocità ed perdita specifica costante.


ENGLISH VERSION

Psychrometry. Psychrometric chart. Basic transformation on moist air. Climatic data for design of thermal plants.
Energy balance of a building. Buildings heat losses. Thermal inertia. Thermo-physical properties of opaque and transparent elements. Heat exchanges by transmission through opaque surfaces, transparent surfaces and towards the ground. Heat exchange by ventilation. Buildings thermal loads in winter and summer regime.
Typologies of heating and cooling systems. Components of heating systems: furnaces, chimneys, heating terminal, circulation pumps, expansion tanks, heat meters. Components of air conditioning systems: filters, air treatment units, heaters, chillers, fans, grilles and diffusers.
Heat generation systems. Traditional and condensing boilers. Heat pumps.
Distributed and concentrated pressure losses. Water distribution networks. Design of water distribution networks. Air distribution networks. Design of air distribution ducts.

Testi docente Dispense del corso
Gino Moncada Lo Giudice, Livio De Santoli, Progettazione di impianti tecnici, Masson Editore Milano.
Anna Magrini, Lorenza Magnani, La progettazione degli impianti di climatizzazione negli edifici. EPC libri.
Ernesto Bettanini, Pierfrancesco Brunello, Lezioni di impianti tecnici - Vol. I e II. Cleup Ed.
Renato Lazzarin, Pompe di calore. Parte teorica, parte applicativa, SGEditoriali, Padova.
Federico M. Butera, "Architettura e ambiente". ETAS Libri.
AA.VV., Il Nuovo Manuale Europeo di Bioarchitettura. Gruppo Mancosu Editore srl.
Erogazione tradizionale
Erogazione a distanza
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1692263

Fax +39 0965.1692201

Indirizzo e-mail


Biblioteca

Tel +39 0965.1692206

Fax +39 0965.1692206

Indirizzo e-mail

Ufficio didattica

Tel +39 0965.1692440/212

Fax +39 0965.1692220

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Segreteria Amministrativa

Tel +39 0965.1692257/261/241

Fax +39 0965.1692201

Indirizzo e-mail


Ufficio orientamento

Tel +39 0965.1692386/212

Fax +39 0965.1692220

Indirizzo e-mail

Social

Facebook

YouTube

Instagram